Constraint-Based Workshops

/. Robustness & Phase Planes
February 6th, 2008

No Meeting Next Week!!
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Robustness Analysis

Used to calculate how the
njective function

nanges to incremental
nanges Iin a particular
flux.

Growth Rate

Curves are plecewise
linear w/slope equal to
Shadow Price

O, uptake rate
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Oxvgen Limitations and By-product Secretion
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Example

In this example we vary
the maximum allowable
uptake rate of oxygen.
The whole range of
oxygenation is shown,
from fully aerobic
conditions to fully
anaerobic conditions.
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Review of Shadow Prices &
Reduced Costs

e Shadow Prices (SP):
— One for each constraint or metabolite
— dz/db,

— SP<0 means adding metabolite (ie. change b=0 to
b<0) would increase Z.

— SP>0 means removing metabolite (ie. change b=0
to b>0) would increase Z.

e Reduced Costs (RC):
— One for each variable or flux.

— dZ/dv; (for zero fluxes)
— RC < 0 means increasing flux (v;) would reduce Z.
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Shadow prices:

Interpret changes in optimal solutions
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Flux distributions for different

levels (or phases) of oxygenation
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o3 [ wl6]nl] Robustness

coretextbhookmodel gms rDbustness.gmsl

[ ]
+<THIS CODE WAS WRITTEN FOR SYSTEMS BIOLOSY SHORT COURSE BY J.REED (7/2008) An aIyS I S

#Fead in the appropridte 5 matrix
finclude CoreTextbookModel.gms

#*Place limits on the exchange Fluxes based on the minimal media
#Ffor 3 negative flux through the exchange reactions implies that
#the metaholites are being taken up or consumed by the cell.

*0yv default the upperlimits of the exchange fluxes are 311 =et to
#the Vmax, indicating that the cell can secrete any of the extracellular
*metabolites

UpperLimits(j) =Vmax;

*CARBON SOURCE: select upper and lower limits for exchange Flux
LowerLimits ('EX glc e')=-1;

UpperLimits ('EX _glc e')=-1;

*311ow coZ,.pi,of, k. hiZo to ke t3ken up by the cell
LowerLimits ('EX coi e')=-Vmax:

LowerLimits ('EX hio e')=-Vmax:

LowerLimits ('EX h e')=-Vmax;

LowerLimits ('EZ 02 e')=-Wmax;

LowerLimits ('EX pi e'|=-Vmax:

*Dafine the npumber of stepz that vou wakt to t3ke eg. Sstepl#stepzZss will have ZF steps

steps /stepléstenzt/: —

Parameter

) used to define the objective function for optimization
n_sSteps nuber of steps that will be taken and is defined by the elements in st
range max mwaxXimum flux valuse through the flux to be varied

range mwin mwinimun flux wvalue through the flux to be wvaried

flux walue(steps) stores the wvalues for the wvaried flux

store_obhj (steps) stores the wvalue of the ohjective function for each iteration
pick _flux(j) & wector of zeros except for the one flux which will be wvarying:

#*Netermine the number of steps based on the number of elements in the set steps

eps=card (Ste

L St =N
*heleat the Flux that yvou wani to
pick flux('TETL')=1:
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Robustness Analysis
Calculations

e Calculate the sensitivity of the objective
function to changes In, use glucose
uptake rate of 5 and aerobic conditions.
— PGL (pentose phosphate flux)

— GAPD (glycolytic flux)
— ICDHyr (TCA cycle flux)

Graph results in excel!
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Robustness Analysis
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What Does this Mean?

e Which reaction(s) are essential (note
that FBA, MOMA, and ROOM would all
predict the same lethal phenotype)?
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Phase Plane Analysis:

Varying multiple fluxes
simultaneously
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Parameter Variation

Robustness Analysis:
Projection of PhPP for

Maximum Growth rate vs.

O, uptake
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Robustness Analysis:
Projection of PhPP for
Maximum Growth rate
VS. Succinate uptake
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Phenotype Phase Plane

Single
Growth

e 2-dimensional region ' condition

— Spanned by 2 metabolic
fluxes

 Typically uptake rates

— lines to demarcate phase
of constant shadow price

— By definition, metabolic
pathway utilization is
different in each region of Infeasible Steady State
the phase plane

Metabolic Flux B

Metabolic Flux A
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Shadow Prices and Isoclines

Shadow Price

Relative
shadow prices
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Isoclines:
Lines w/ Constant Objective Values

A

Single Substrate
Limitation

Y
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Characteristics of Phase Planes

Infeasible regions: fluxes don’t balance

Regions of single substrate limitations (oo = 0 or
Infinity)

Regions of dual substrate limitations (o < 0)

Futile regions (o >0 )

Isoclines (like constant height in topography maps)

Line of optimality: corresponds to maximal biomass
yield (g cells/mmol carbon source)

— You find this by fixing carbon uptake rate and the optimize
for biomass using FBA, this will give you one point on the LO
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Line of Optimality: Max. Y, .
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Acetate Phase Plane for E. coli
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Acetate PhPP: Two Futile Regions

20 4
Hypothesis:
Metabolic regulation
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Acetate PhPP & Experimental Data
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Growth on Acetate
3D Phase Plane:

Growth Rate (1/hr)
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Succinate Phenotype Phase Plane

-also works for:
malate,
glucose,
fumarate

-does not
work for
glycerol
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Growth on Succinate

Growth Rate (1/hr)
08
Dual
substrate
limited
region

Oxygen Uptake FEa'[E11
(mmaole’gr DV Succinate Utake Hate
(rmimoledg DVWhr)
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Application:
Predicting
complex biology;
adaptive evolution

and picking
optimal growth
states
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Growth Rate (1/hr)

Oxygen Uptake Rate

Growth Rate (1/hr)

1.2
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Methods — adaptive evolution

Cultures grown in /\' /\ q
250m| minimal medium

supplemented with 2g/L

carbon source

Serial passage during ~ Wildtype Day 1l Day2 Day ..

exponential growth

Stable growth rate
achieved at end of
evolution

Cells frozen throughout
evolution for phenotype
testing

Phenotype testing Phenotype testing
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Cellular Evolution: Growth rates on Glycerol

Growth rate (™)

EVOLVING | STABLE

1

.

30 o
Time (d '

Pre- Evolutio _
Post-Evolution

Ibarra et al, 2002,
Nature, 420: 186-189




