Reconstruction and Analysis of Metabolic Networks 1

Outline

- What is a Reconstruction?
- Data Collection
- Interactions Between Network Components
- Special Considerations
- Applications

Genome-scale Metabolic Model Reconstruction

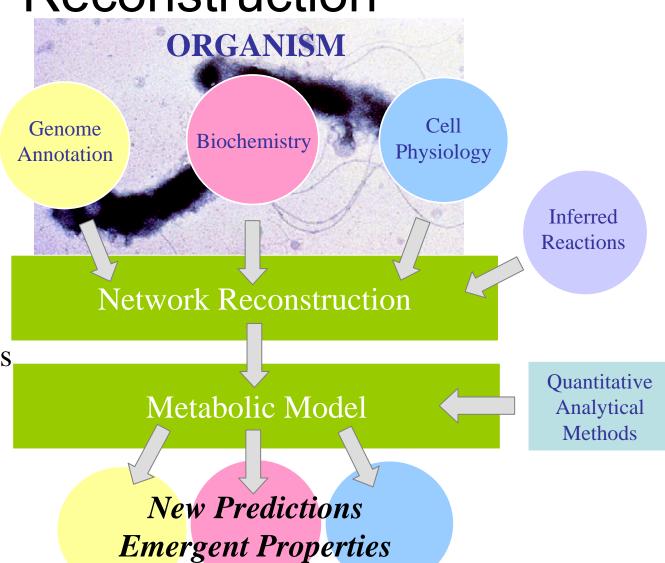
Genome Annotation

- by homology, location

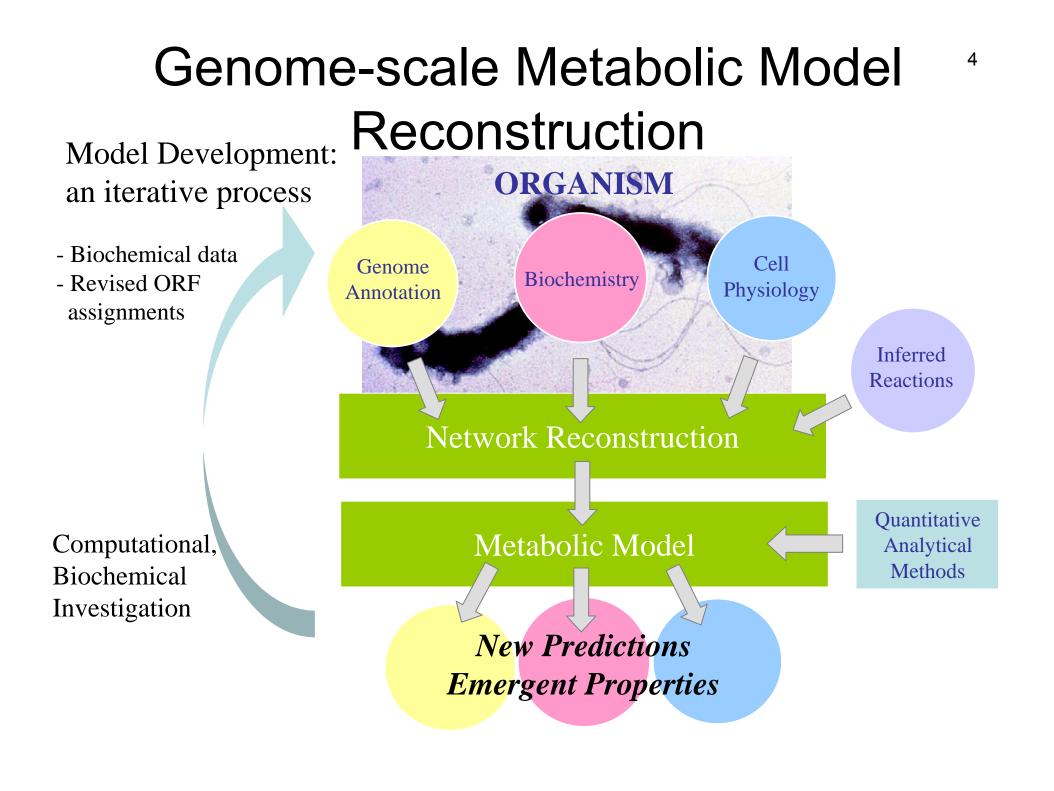
Biochemical Data

- protein characterized

Physiological Data


- indirect, pathway known

Inferred Reactions


- indirect, inferred from biomass requirements

Quantitative Analysis

- simulate cell behavior
- drive experimental studies

3

What is in a reconstruction?

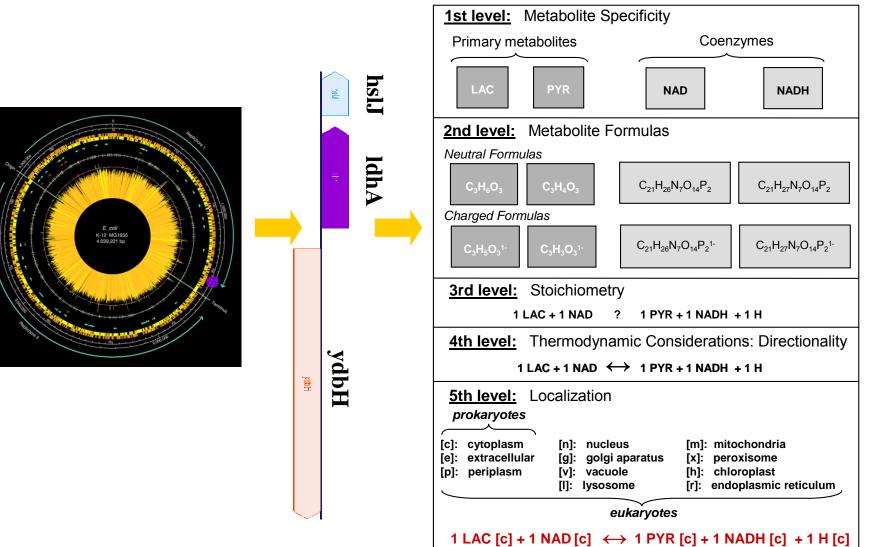
Genome:

Annotated genes Gene location Regulatory regions Wobble base pairs

Biochemistry:

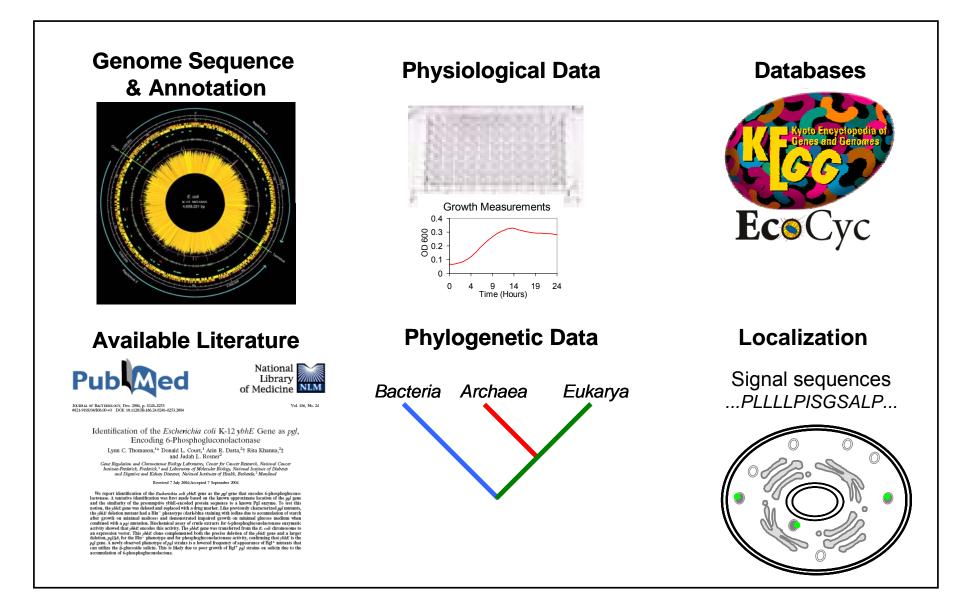
Stereochemistry pH and pKa (charge) Elemental balance Charge balance Multiple reactions/enzyme Multiple enzymes/reaction

Transcription/translation:


Gene to transcript to protein to reaction association Transcript half-lives tRNA abundances Ribosomal capacities

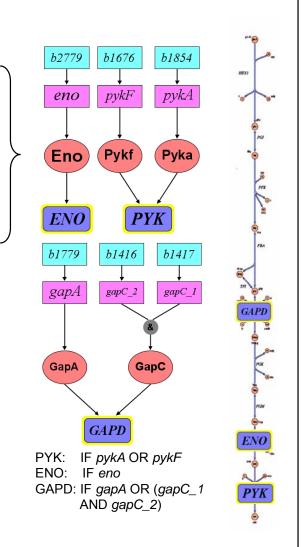
Physiology:

Flux data Knock-outs Balanced functions Overall phenotypic behavior Location of gene product compartmentalization

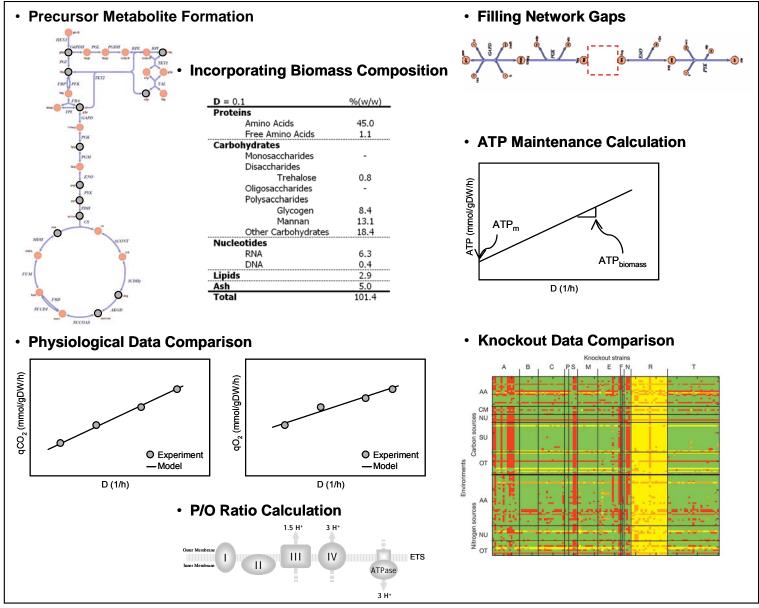

Defining Metabolic Reactions

STEPWISE INCORPORATION OF INFORMATION

Sources of Information

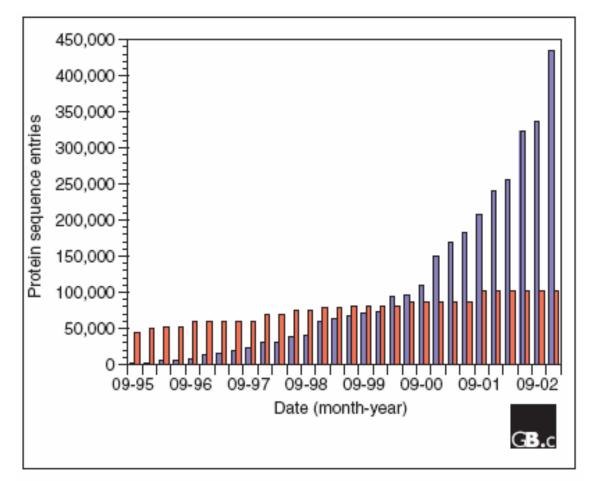


Network Assembly and Representation


Reconstruction of Glycolytic Pathway

Abbr.	Glycolytic Reactions	Genes
HEX1	[c]glc +atp → g6p + adp	glk
PGI	[c]g6p ↔ f6p	pgi
PFK	[c]atp + f6p \rightarrow adp + fdp + h	pfkA,pfkB
FBA	[c]fdp ↔ dhap + g3p	fbaA,fbaB
TPI	[c]dhap ↔ g3p	tpiA
GAPD	[c]g3p + nad + pi ↔ 13dpg + h + nadh	gapA,gapC_1,gapC_2
PGK	[c]13dpg + adp \leftrightarrow 3pg + atp	pgk
PGM	[c]3pg ↔ 2pg	gpmA,gpmB
ENO	[c]2pg ↔ h2o + pep	eno
PYK	[c]adp + h + pep \rightarrow atp + pyr	pykA,pykF

	HEX1	PGI	PFK	FBA	TPI	GAPD	PGK	PGM	ENO	PYK
atp	-1	0	-1	0	0	0	1	0	0	1
glc	-1	0	0	0	0	0	0	0	0	0
adp	1	0	1	0	0	0		0	0	-1
g6p	1		0	0	0	0	0	0	0	0
h	1	0	1	0	0	1	0	0	0	-1
f6p	0			0	0	0	0	0	0	0
fdp	0	0		-1	0	0	0	0	0	0
dhap	0	0	0			0	0	0	0	0
g3p	0	0	0			-1	0	0	0	0
nad	0	0	0	0	0	-1	0	0	0	0
pi	0	0	0	0	0	-1	0	0	0	0
13dpg	0	0	0	0	0	1		0	0	0
nadh	0	0	0	0	0	1	0	0	0	0
3pg	0	0	0	0	0	0			0	0
2pg	0	0	0	0	0	0	0			0
рер	0	0	0	0	0	0	0	0		-1
h2o	0	0	0	0	0	0	0	0		0
pyr	0	0	0	0	0	0	0	0	0	1


Network Evaluation

Data Collection

I. Genome AnnotationII. BiochemistryIII. Physiology

I. Genome Annotation

Figure I

Cumulative number of protein sequence entries (y-axis) in completed genomes (CoGenT, in blue) and Swiss-Prot (in red) as a function of time (x-axis).

- 433,238 protein sequences derived from whole genomes (expected to reach 1 million by 2005)
- 101,602 entries in Swiss Prot
- High-quality annotation requires substantial effort

Genome Annotation: how to

- Open Reading Frame (ORF) Identification
 - Start & Stop codons, GLIMMER.

• "Traditional" Annotation Methods

- Experimental (direct)
- Sequence homology
- Generally covers 40-70% of new genomes

• New Annotation Methods

- Protein-protein interactions
- Correlated mRNA expression levels
- Phylogenetic profile clustering
- Protein fusion
- Gene neighbors (operon clustering)

Genome Databases: TIGR

http://cmr.tigr.org/tigr-scripts/CMR/CmrHomePage.cgi

The Comprehensive Microbial Resource (CMR)

- 353 completed bacterial genomes
- 28 completed archaeal genomes
- Single-genome analysis:
 - Genome overview,
 - list by role category (eg amino acid biosynthesis)
 - analysis methods, searches
- Multi-genome analysis also available

Genome Databases: TIGR

CMR Manual | CMR Tutorial | Links | CMR Resources | CMR Feedback

Genome Search

Organism name:

Genome List

View All CMR Genomes

Gene Search

Search by:	(
Locus	Y
Match:	
• Exact	Inexact
Keywords/A	ccession:
	Search

Data Summary

	Complete	Draft	Totals
Bacteria	353	17	370
Archaea	28	0	<u>28</u>
Viruses	3	0	3
Totals	<u>384</u>	<u>17</u>	<u>401</u>

Welcome to the Comprehensive Microbial Resource

The Comprehensive Microbial Resource (CMR) is a free website used to display information on all of the publicly available, complete prokaryotic genomes. In addition to the convenience of having all of the organisms on a single website, common data types across all genomes in the CMR make searches more meaningful, and cross genome analysis highlight differences and similarities between the genomes. A <u>CMR Mirror</u> site maintained by the Genome Encyclopedia of Microbes (<u>GEM</u>) in Korea is also available. [More Information] [Publication Information]

CMR Menu Bar Tools

CMR offers a wide variety of tools and resources, all of which are available off of our menu bar at the top of each page. Below is an explanation and link for each of these menu options. First time users can use our <u>CMR tutorial</u> to learn how to navigate this site.

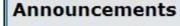
Genome Tools

Find organism lists as well as summary information and analyses for selected genomes.

Searches

Search CMR for genes, genomes, sequence regions, and evidence. Comparative Tools

- Compare multiple genomes based on a variety of criteria, including sequence
- homology and gene attributes. SNP data is also found under this menu.


Lists Select and download gene, evidence, and genomic element lists.

Downloads

Download gene sequences or attributes for CMR organisms, or go to our FTP site.

Carts

Select genome preferences from our Genome Cart or download your Gene Cart genes.

March 13, 2007: <u>CAMERA</u> i a web resource for metagenomic research. CAMERA's debut coincides with the <u>publication</u> of the <u>Global Ocean Sampling</u> expedition's extensive dataset cataloging over 6 million new genes from uncultured marine microbes Come visit <u>CAMERA</u>, and secour growing collection of metagenomics datasets an tools.

Latest Releases

Data Release: 21.0 Website Release: 3.0

CMR Class Schedule

June 12-14, 2007 August 21-23, 2007 October 16-18, 2007

TIGR's Annotation Engine The Annotation Engine is a

free service which provides

Genome Databases: NCBI

Microbial Genomes Resources

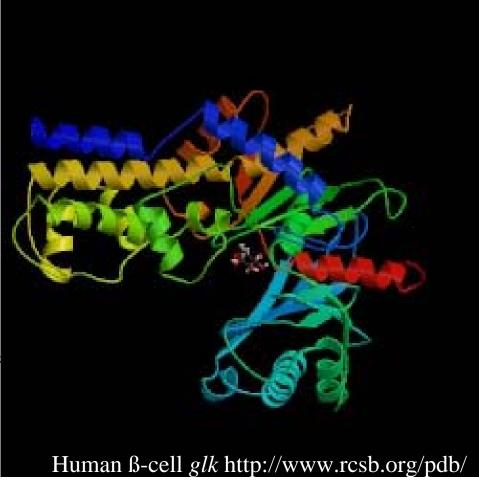
- 595 completed microbial genomes (47 archael)
- FTP sites for Protein Annotations (ptt files)

S NCBI	ENTREZ Genome Project Connection Information discovery	
All Databases		xonomy
Search Genome Proje	ect 🖌 for Go Clear	
Limits Preview/Ir	ndex History Clipboard Details	
Display Overview	Show 20 Send to V	
All: 1 Environment	al: 0 Eukaryotes: 0 Prokaryotes: 1 🛠	
		Links
Genome Project > Syr	nechocystis sp. PCC 6803 project at Kazusa	?
Resource Links	Model cyanobacterium for analysis of photosynthetic organisms.	ta
• BLAST genome	Lineage: Bacteria; Cyanobacteria; Chroococcales; Synechocystis; Synechocystis sp. PC 6803	00
<u>FTP</u> TaxPlot		
Organism data in GenBank		
• Genomic		
mRNA Brotoin		
Protein		

II. Biochemical Data: Reactions

stoichiometry and reversibility

Gene: glk


Enzyme: Glucokinase

Reaction:

ATP + D-Glucose ->

ADP + D-Glucose 6-phosphate

E.C.: 2.7.1.1

Trust the E.C. Nomenclature!

EC 1 Oxidoreductases

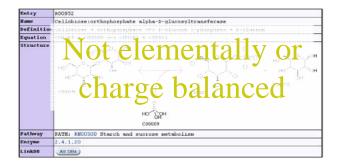
EC 1.1 Acting on the CH-OH group of donors EC 1.1.1 With NAD or NADP as acceptor EC 1.1.2 With a cytochrome as acceptor EC 1.1.3 With oxygen as acceptor EC 1.1.4 With a disulfide as acceptor EC 1.1.5 With a guinone or similar compound as acceptor EC 1.1.99 With other acceptors Acting on the aldehyde or oxo group of donors EC 1.2 EC 1.2.1 With NAD or NADP as acceptor EC 1.2.2 With a cytochrome as acceptor EC 1.2.3 With oxygen as acceptor EC 1.2.4 With a disulfide as acceptor EC 1.2.7 With an iron-sulfur protein acceptor EC 1.2.99 With other acceptors EC 1.3 Acting on the CH-CH group of donors EC 1.3.1 With NAD or NADP as acceptor EC 1.3.2 With a cytochrome as acceptor EC 1.3.3 With oxygen as acceptor EC 1.3.5 With a quinone or related compound as acceptor EC 1.3.7 With an iron-sulfur protein as acceptor

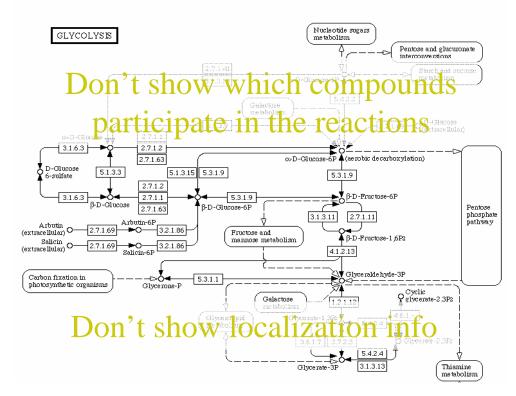
 Not widely available for other types of gene products (T.C. numbers are being developed)

17

- Kudos to enzymologists
- Make sure to balance elements when writing reaction

KEGG


http://www.genome.jp/kegg/kegg2.html


KEGG - Table of Contents

Database	Release Info	Search & Compute	DBGET S	Search
KEGG PATHWAY	New maps Update status	Search objects in pathways Color objects in pathways	PATHW4	ΥY
KEGG BRITE	Update status	Map relations to hierarchies KEGG Orthology (KO)	BRITE KO	
KEGG GENES	New organisms Update status	SSDB search BLAST search FASTA search EGassembler for ESTs KAAS automatic annotation	GENOME	/ OGENES
KEGG LIGAND	Update status	SIMCOMP compound search KCaM glycan search e-zyme reaction prediction PathComp computation	LIGAND	COMPOUND DRUG GLYCAN REACTION RPAIR ENZYME

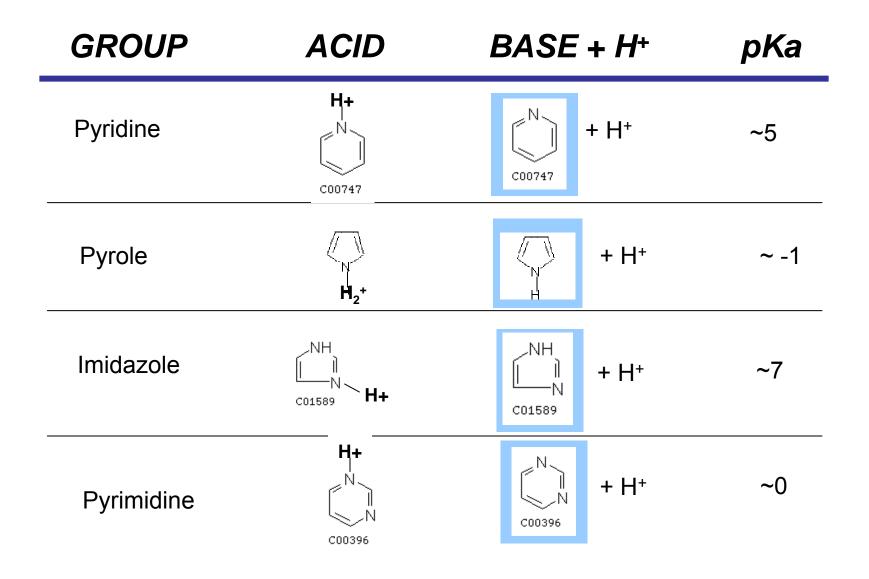
How are these reconstructions different than KEGG?

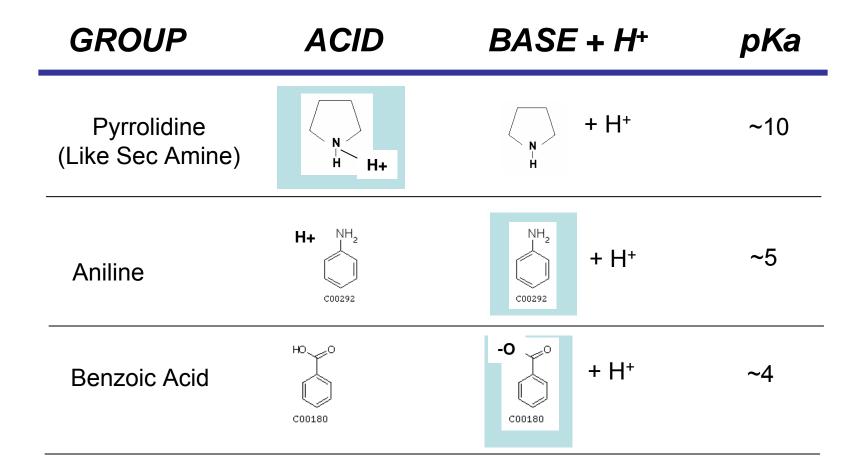
http://www.genome.jp/ligand/

Charge Determination on Metabolite at neutral pH

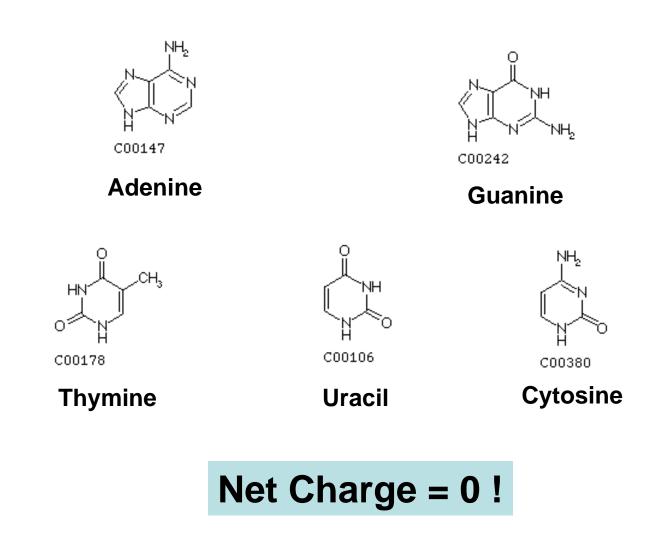
Identify compound & look up in KEGG http://www.genome.ad.jp/dbget-bin/www_bfind?compound

Determine and identify ionizable group

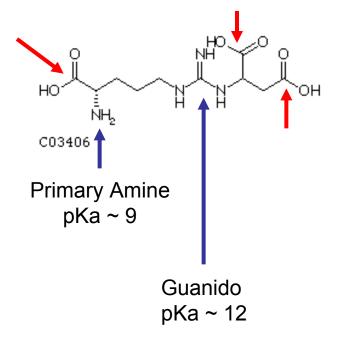

Determine acid and base forms


Determine pKa values based on the identifiable group (in the Table)

- •If pKa > pH, acid form dominant
- •If pKa < pH, base form dominant


GROUP	ACID	BASE + H ⁺	рКа
Terminal Carboxyl	erminal Carboxyl -COOH		~4
Primary (Secondary, Tertiary) Amine	-NH ₃ +	–NH ₂ + H+	> 9
Thiol	-SH	–S⁻ + H⁺	~8.5
Phenol	OH C00146	O - () + H+ C00146	~10

GROUP	ACID	BASE + H ⁺	рКа
Primary Alcohol	Primary Alcohol -CH ₂ OH		~15
Acetamide (Amide)	HJC NH2 OH+	H ₃ C NH ₂ 0 C06244	~0
Urea (Carbamide)	OH+ H₂N NH₂ C00086	0 H₂N H₂ C00086 + H⁺	~1
Guanido Group	H -N-C-NH ₂ NH ₂ +	H -N-C-NH ₂ + H ⁺ NH	~12



Ionizable Groups 5: Purines & Pyrimidines

Example : Arginosuccinate

Example: Argininosuccinate

Neutral MF: C10H18N4O pKa: 1.62, 2.70, 4.26, 9.58, >12

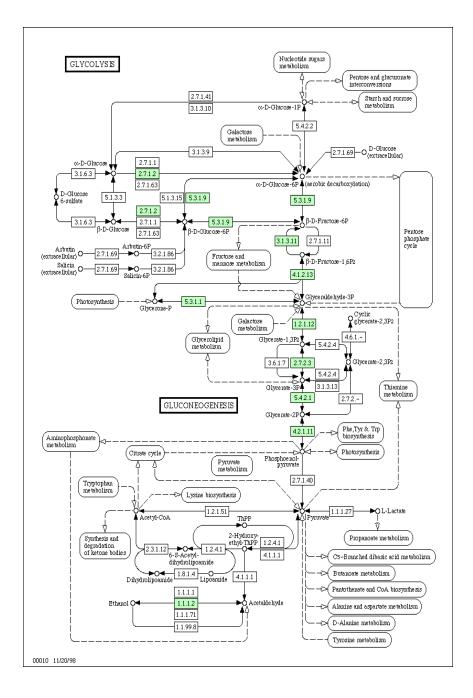
Net Charge: -1 Charged MF: C10H17N4O6

Biochemical Data: Curation and Expansion of the Network

H. pylori Glycolysis according to KEGG:

Glucose
$$\implies$$
 G-6-P \implies F-6-P \bigcirc

H. pylori Glycolysis according to Hoffman *et al.* (1996):


Organism-specific Textbooks

- Great starting point
- Broad view of the organism's metabolism, biochemistry, physiology, uses, etc.

III. Physiological Information and Inferred Reactions:

Filling in the Gaps based on indirect evidence

Filling in the Gaps – an Example³⁰

- Experiments determine which amino acids are taken up by *H. pylori* vs. which can be produced *in vivo*
- Missing steps of amino acid biosynthesis are added if necessary on the basis of this physiological evidence

Amino Acid Requirements						
AA	Reynolds	Model				
Ala	-	-				
Arg	-	-				
Asn	+	+				
Asp	+	+				
Cys	+	+				
Gln	+	+				
Glu	+	+				
Gly	+	+				
His	-	-				
lle	-	-				
Leu	-	-				
Lys	+	+				
Met	-	-				
Phe	-	-				
Pro	+	+				
Ser	+	+				
Thr	+	+				
Trp	+	+				
Tyr	+	+				
Val	-	-				

in vivo in silico

Inferred Reactions

- Some reactions are included based on indirect physiological evidence (by inference)
 - Assumption: the cell must be able to produce all biomass components to grow
 - Reactions are added if necessary
 - Generally transporters, etc.
 - Most tentative; should be examined more carefully

Reaction Confidence: Sources of Evidence

Biochemical
Enzyme has been to

Enzyme has been tested biochemically.

Genetic

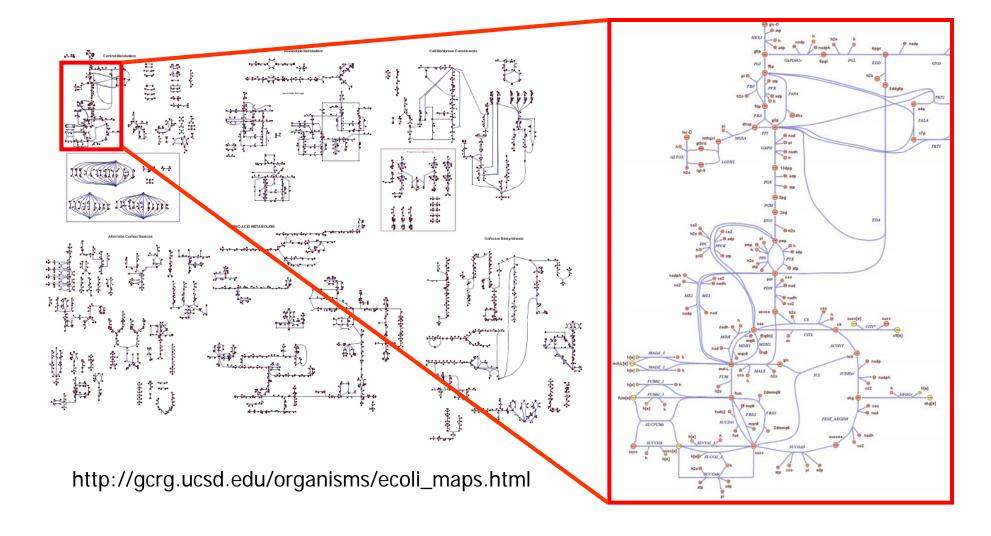
Gene overexpression and purification, gene deletions.

Sequence

There is significant sequence similarity to another gene with known function.

• Physiological

There is physiological data to support inclusion in the model.


Modeling

Reaction is included to improve simulation results.

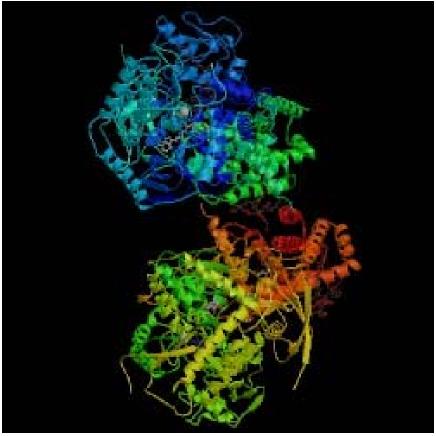
Model Reaction Properties							
Reaction:							
X5PL3E L-xylulose 5-phosphate 3-epimerase							
xu5p-L> ru5p-L	xu5p-L> ru5p-L						
Subsystem: Alternate Ca	arbon Metabol	ism			•		
Confidence: 4.0							
Confidence Details No	Confidence Details Notes						
Supportive Evidence		netic A	Assay	Medium	High		
Biochemical Data		erexpr					
Genetic Data		% Hom					
Sequence Data	V	ows on	00	hata			
Physiological Data							
Modeling Data	Ľ						

Gene to Reaction Connections

Escherichia coli Metabolism ³⁴

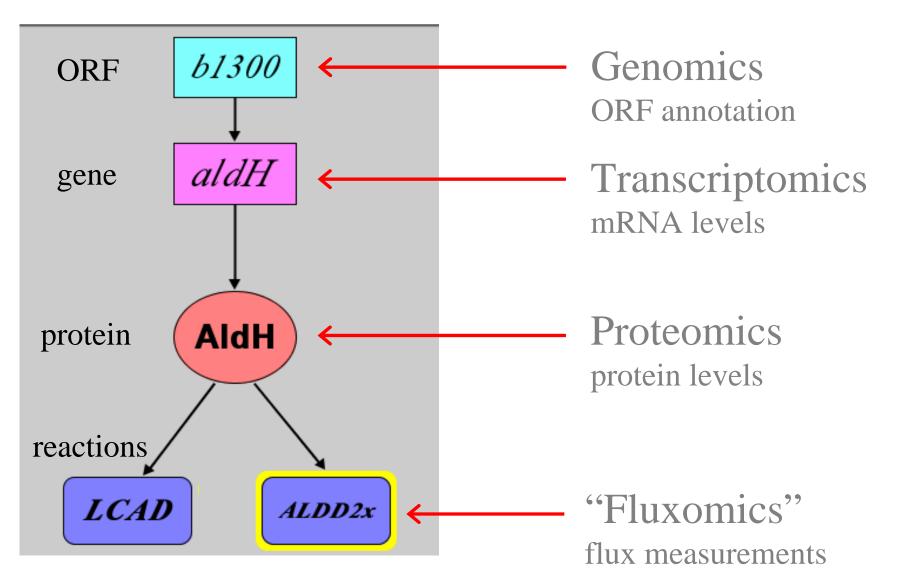
From Genes to Reactions

Not all genes have a one-to-one relationship with their corresponding enzymes or reactions

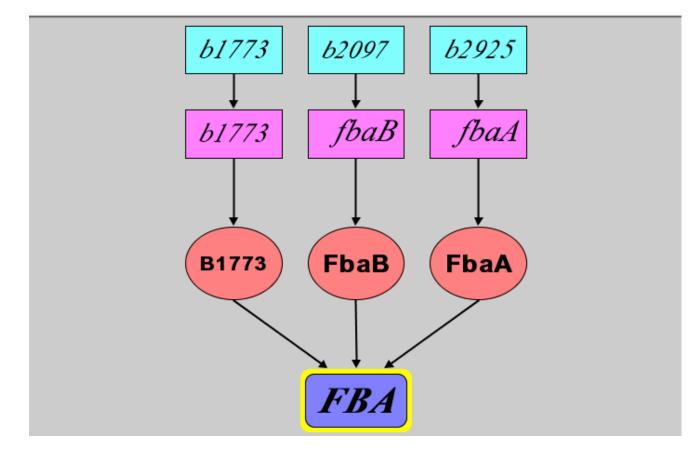

Many genes, one reaction: *frdABCD*

Four subunits combine to form fumarate reductase enzyme, catalyzing

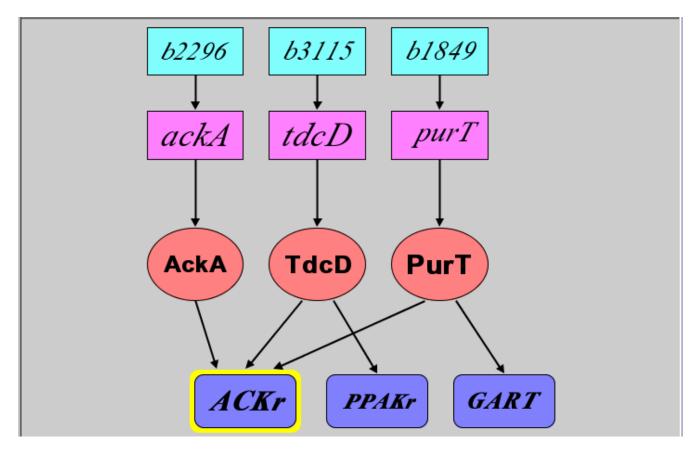
 $\text{FUM} + \text{FADH}_2 \xrightarrow{} \text{SUCC} + \text{FAD}$

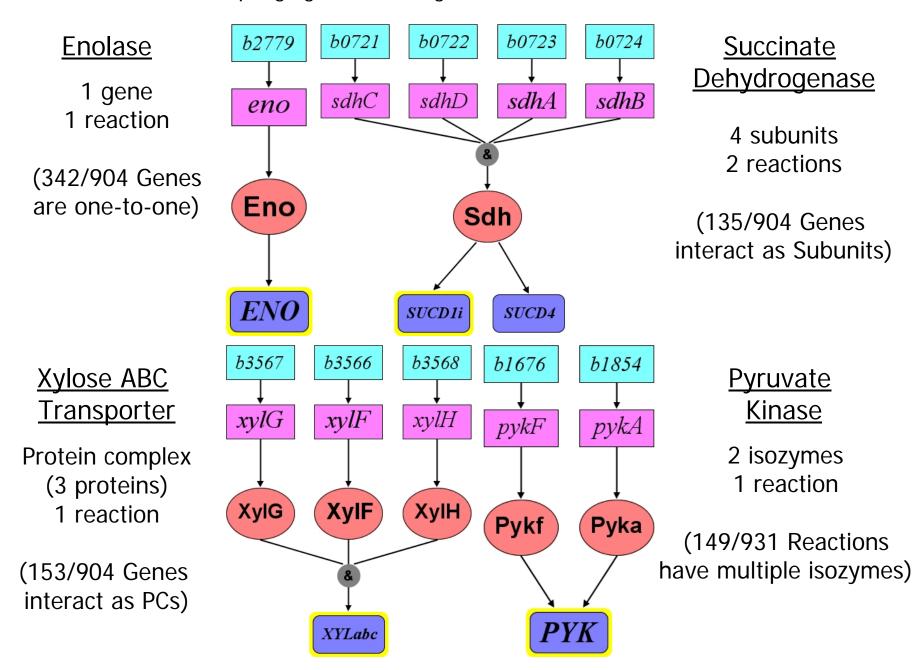

One gene, many reactions: tktA

One gene encodes transketolase I enzyme, catalyzing $R5P + X5P \rightarrow T3P1 + S7P$ $E4P + X5P \rightarrow T3P1 + F6P$


35

Integrating "-omics" Data


Example of Isozymes


fructose-1,6-bisphosphate aldolase

A More Complex Example

Pyruvate Metabolism

http://gcrg.ucsd.edu/organisms/ecoli_GPR.html

Special Considerations

Biomass Composition

- Indicates demands of the system (more detail in modeling section of class)
- Precursors may also be used for smaller networks
- Approximation of Biomass composition for less-characterized organisms (*H. pylori*, *H. influenzae*)

Metabolite	Demand (mmol)
ATP	41.3
NAD ⁺	3.5
NADPH	18.2
G6P	0.2
F6P	0.1
R5P	0.9
E4P	0.4
GA3P	0.1
3PG	1.5
PEP	0.5
PYR	2.8
ACCOA	3.7
OXA	1.8
AKG	1.1
SUCCOA	(trace)

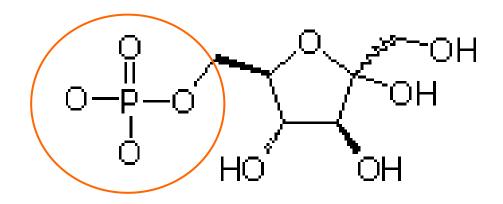
Amt Residues (µmol/g of dried cells)		Residues	Amt (µmol/g of dried cells)		
Protein amino acids ^b		Lipid components ^d			
Alanine	488	Glycerol	161		
Arginine	281	Ethanolamine	97		
Asparagine	229	C16:0 fatty acid (43%)			
Aspartate	229	C16:1 fatty acid (33%)			
Cysteine	87	C18:1 fatty acid (24%)			
Glutamate	250	Average fatty acid	258		
Glutamine	250	, , , , , , , , , , , , , , , , , , ,			
Glycine	582	LPS components			
Histidine	90	Glucose	16.8		
Isoleucine	276	Glucosamine	16.8		
Leucine	428	Ethanolamine	25.2		
Lysine	326	Rhamnose	8.4		
Methionine	146	Heptose	25.2		
Phenylalanine	176	KDO	25.2		
Proline	210	Hydroxymyristic acid	33.6		
Serine	205	Fatty acid (C14:0)	16.8		
Threonine	241				
Tryptophan	54	Peptidoglycan components ^g			
Tyrosine	131	N-Acetylglucosamine	27.6		
Valine	402	N-Acetylmuramic acid	27.6		
	102	Alanine	55.2		
NA nucleotides ¹		Diaminopimelate	27.6		
AMP	165	Glutamate	27.6		
GMP	203	- Statistic	2710		
CMP	126	Glycogen components ^h			
UMP	136	Glucose	154	Es	
NA nucleotides ^d		Polyamines ⁱ		on	
dAMP	24.6	Putrescine	34.1	an	
dGMP	25.4	Spermidine	7.0	CELLUI	
dCMP	25.4			SECOND EI	
dTMP	24.6			SECOND EI	

TABLE 2 Residue composition of E. coli B/r protoplasma

herichia coli Salmonella

AND MOLECULAR BIOLOGY

Editor in Chief FREDERICK C. NEIDHARDT University of Michigan Medical School, Ann Arbor, Michigan


Charge Considerations

- An underappreciated aspect of building reaction networks—electrical charge should be conserved in all reactions
- Phosphofructokinase (from KEGG): $ATP + F6P \Rightarrow ADP + FDP + H^+$ $+ H^+$ = -6 = -7 = -6

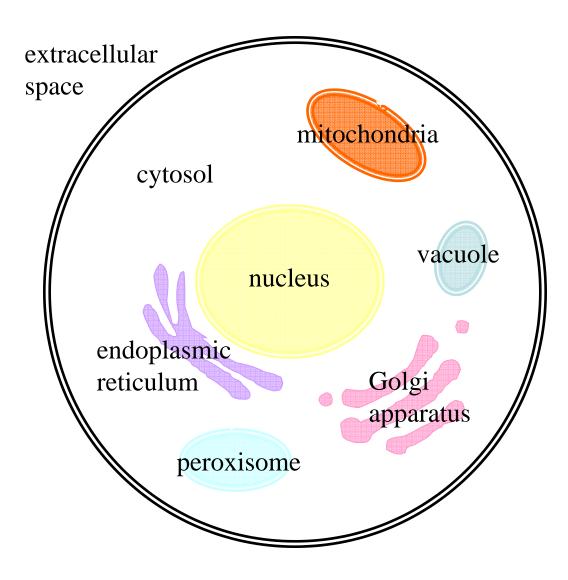
Finding Compound Charges

- Consult diagram and look at each chemical group independently
- Determine if H's are attached or dissociated at cellular pH (attached if pKa<pH)—can find pKa values
- F6P:

Both H's dissociate at cellular pH, leaving a charge of -2

Balancing Reactions: An Example pyruvate decarboxylase

pyr \rightarrow acald + co₂ C3H3O3 C2H4O CO2 ELEMENTALLY IMBALANCED (H and O) (-1) (0) (0) CHARGE IMBALANCED

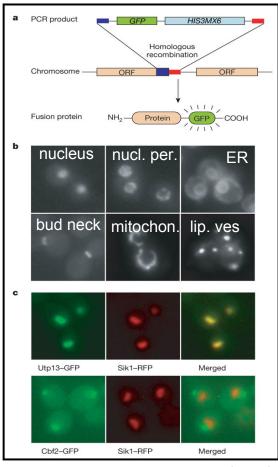

Solution # 2:

 $h_2o + pyr \rightarrow acald + co_2 + \frac{1}{2}o_2 + h^+$ H2O C3H3O3 C2H4O CO2 O2 H ELEMENTALLY BALANCED (0) (-1) (0) (0) (0) (+1)

Solution # 3:

 $h^+ + pyr \rightarrow acald + co_2$ H C3H3O3 C2H4O CO2 ELEMENTALLY BALANCED (+1) (-1) (0) (0)

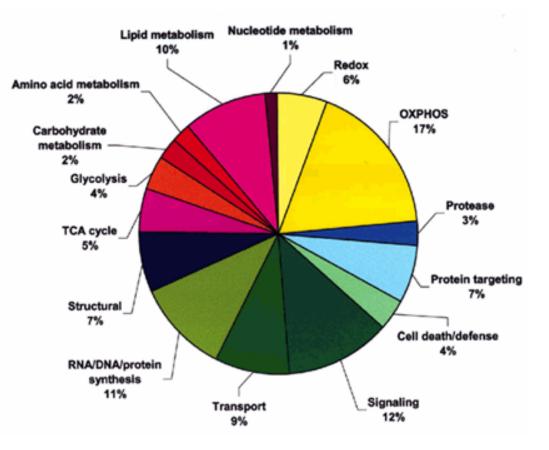
Compartmentalization


There are 8 compartments included in our yeast model

May need to infer transport reactions between compartments

H+, ATP, NADH, NADPH must be balanced within each compartment

Protein Localization


- Compartmentalization is a key part of network reconstruction
- Both a component (static localization) and state (dynamic localization) data type
- Techniques typically based on GFP-tagging of proteins or isolation of specific organelles
- Potential problems:
 - Effect of the GFP tag on localization
 - Usually human assistance is required in image analysis
 - Condition dependence: e.g. mitochondrial localization agrees only in 30% of cases in yeast between three different data sets

Huh et al. Nature 425:686 (2003)

Mitochondrial Isolation: Protein Identification

- 657 distinct proteins
- 498 (81%) functionally classified into 15 cellular processes.
- 153 unique enzymatic activities
 - Glycolysis, TCA cycle, oxidative
 phosphorylation, urea
 cycle, fatty acid
 oxidation, lipid and
 heme biosynthesis.

Taylor S. et al, Nature Biotech (21), 2003

Metabolic Databases

	Kegg	Brenda		Entrez Gene PubChem	MetaCyc	Transport DB	TIGR	PSORT db
Information Regarding Def	ìnition	of Met	tabolic	Reaction				
Substrate Specificity	•	•	•		•	٠		
Metabolite Formulas	•	•		•	•	•		
Stoichiometry	•	•	•		•			
Reaction Directionality	•	•			•	•		
Localization				•	•			•
Information Regarding Def	ìnition	of Met	tabolic	Reaction				
Genome Seq. & Annot.			•	•			•	
GPR Associations	•	•			•	•		
Literature	•	•	•	•	•	•		

	Genes	SKI	NG	Nm	N _R	Status	Ref
BACTERIA							
Bacillus subtilis	4,225	4.8	614	637	754	С, Е	93
Escherichia coli	4,405	55.1	904	625	931	С, Е	39
			720	438	627	С, Е	90
			961	NA	1,107	С	53
Francisella tularensis	1,804		350 ^a	NA	429	С	68
Geobacter	3,530		588	541	523	С, Е	d
sulfurreducens							0.4
Haemophilus	1,775	8.9	296	343	488	С, Е	94
influenzae			400	451	461	С, Е	95
Helicobacter pylori	1,632	13	341	485	476	С, Е	61
			291	340	388	С, Е	96
			301 ^{a,c}	442 ^c	533°	С	63
Lactococcus lactis	2,310		358	422	621	C,E	97
Mannheimia	2,463		335	352	373	С, Е	98
succiniproducens							
Pseudomonas putida	5,441		523	NA	581	С, Е	e
Pseudomonas	5,640	5.7	516	NA	647	С, Е	e
aeruginosa			718	623	800	С	67
Staphylococcus aureus	2,702	16	619	571	641	С, Е	4
Streptomyces	8,042	0.13	700	500	700	С, Е	36
coelicolor							
ARCHAEA							
Methanococcus	1,821	0.3	436 ^a	510	609	С	64
jannaschii							
Methanosacrcina	5,072		692	558	619	С, Е	f
barkerii							
EUKARYA							
Arabidopsis thaliana	28,848		1,418	NA	894	С	66
Homo sapiens		48.5		661	1,093	C	65
Mus musculus	28,287	15.6	1,156 ^b	872	1,220	С, Е	92
Plasmodium	5,342		737 ^a	525	697	C	3
falciparum	- ,					-	
Saccharomyces	6,183	10.6	750	646	1,149	С, Е	45
	-,			0.0	-,	-, -	91

0

Genome-Scale Reconstructions